Max Algorithms in Crowdsourcing Environments

Petros Venetis, Hector Garcia-Molina
Department of Computer Science Stanford University
Stanford, CA, 94305, USA
\{venetis, hector\}@cs.stanford.edu

Kerui Huang, Neoklis Polyzotis
Department of Computer Science
UC Santa Cruz
Santa Cruz, CA, 95064, USA
\{khuang, alkis\}@cs.ucsc.edu

Abstract

Our work investigates the problem of retrieving the maximum item from a set in crowdsourcing environments. We first develop parameterized families of max algorithms, that take as input a set of items and output an item from the set that is believed to be the maximum. Such max algorithms could, for instance, select the best Facebook profile that matches a given person or the best photo that describes a given restaurant. Then, we propose strategies that select appropriate max algorithm parameters. Our framework supports various human error and cost models and we consider many of them for our experiments. We evaluate under many metrics, both analytically and via simulations, the tradeoff between three quantities: (1) quality, (2) monetary cost, and (3) execution time. Also, we provide insights on the effectiveness of the strategies in selecting appropriate max algorithm parameters and guidelines for choosing max algorithms and strategies for each application.

Categories and Subject Descriptors

H.1.m [Information Systems]: Models and PrinciplesMiscellaneous; H.5.m [Information Systems]: Information Interfaces and Presentation-Miscellaneous

Keywords

human computation, crowdsourcing, max algorithms, worker models, vote aggregation, plurality voting

1. INTRODUCTION

Humans are more effective than computers for many tasks, such as identifying concepts in images, translating natural language, and evaluating the usefulness of products. Thus, there has been a lot of recent interest in crowdsourcing, where humans perform tasks for pay or for fun [1, 20].

Crowdsourced applications often require substantial programming: A computer must post tasks for the humans, collect results, and cleanse and aggregate the answers provided by humans. In many cases, a computer program is required to oversee the entire process. For instance, say we have 1,000 photos of a restaurant, and we wish to find the one that people think is most appealing and best describes the restaurant. (We wish to use the photo in an advertisement, for example.) Since it is not practical to show one

Copyright is held by the International World Wide Web Conference Committee (IW3C2). Distribution of these papers is limited to classroom use, and personal use by others.
$W W W$ 2012, April 16-20, 2012, Lyon, France.
ACM 978-1-4503-1229-5/12/04.
human all 1,000 photos, we need to break up the problem. For example, as a first step, we may show 100 people 10 photos each, and ask each one of them to select the best one in their set. Then we can select the 100 winners, partition them into 10 new sets, and ask 10 humans to evaluate, and so on. What we have described is a crowdsourcing algorithm, analogous to traditional algorithms, except that the base operations or comparisons (e.g., compare 10 photos) are done by humans as opposed to by the computer. Note that we use the term program to refer to the computer code that runs the entire process (e.g., finding human workers, displaying photos to the workers, paying workers, and so on). We reserve the term algorithm to refer to the logic that performs a specific function of interest (e.g., finding the max).

In this paper we study an important crowdsourcing algorithm, one that finds the best or maximum item in a set, just as illustrated in the previous example. This max algorithm is a fundamental one, needed in many applications. For instance, the max algorithm can be used to find the most relevant URL for a given user query. (The results can subsequently be used as a gold standard for evaluating search engine results.) As another example, a max algorithm can be used in an entity resolution application, e.g., to find the best Facebook profile that matches a target person.

The main challenge in developing an effective max algorithm is in handling user mistakes or variability. Specifically, humans may give different answers in a comparison task (i.e., pick a different item as the best), either because they make a mistake and pick the wrong item, or because the comparison task is subjective and there is no true best item. We can compensate by asking multiple humans to perform each task (comparison in our setting), but these extra tasks add cost and/or latency. In this paper we address these quality-cost-latency tradeoffs and explore different types of max algorithms, under different evaluation criteria.

There is a substantial body of work in the theory community that explores algorithms with "faulty" comparisons (e.g., $[2,3,4,7,8,9,16,21]$), and that work is clearly applicable here. However, those works use relatively simple models that often do not capture all of the crowdsourcing issues (such as the monetary cost required to execute a crowdsourcing algorithm). For example, these works assume that operators (in our case humans) compare only two items at a time, or have a fixed probability of making an error. It is not obvious how to extend the proposed techniques to the common case in crowdsourcing where humans compare more than two items at a time and the error is related to how similar the items are.

At the other extreme, there is recent work [15] that implements algorithms like max in a real crowdsourcing system and considers all practical issues. Their algorithm is highly specialized to a specific crowdsourcing scenario and it is not obvious how to generalize it to handle other scenarios, e.g., different types of item comparisons or different types of human workers.

For our work, we have taken a middle-of-the-ground approach: We formulate a fairly detailed framework that captures, for instance, human tasks that involve sets of items of different sizes, and different human error models. Within this framework, we are able to study, not just a single algorithm or approach, but a wide range of families of parameterized max algorithms, and we are able to study how to tune these algorithms for best performance. Instead of just asking the question "For one given error model (or for one particular crowdsourcing system), what algorithm is best," we ask the more general question "For what type of workers and tasks does each possible family of max algorithm work best." Instead of just asking the question "How does algorithm X perform when humans can compare two items," we ask "What is the impact on cost and answer quality of the number of items a human is given to compare each time." Instead of just showing that "Algorithm X works well in a given setting," we show how to tune each family of max algorithms (e.g., how many repetitions of each tasks are needed at each stage of the process). To answer these questions we really need a model that is relatively rich and detailed, but yet not as rigid as an actual implementation.

As we will see, for some of our studies we resort to simulations, since the models are not amenable to detailed analysis. However, in some of our scenarios, we are able to develop analytical expressions that describe performance. Since both our simulations and analysis share the same underlying framework, when we can obtain analytical expressions, we are also able to validate them with simulations. This redundancy gives us greater confidence in both the simulations and the analysis.

Contributions Our main contributions are:

- We develop a framework for reasoning about max algorithms (Section 2).
- A max algorithm often asks multiple workers to perform the same comparison (task), so it needs a rule to aggregate the responses. We formalize the most popular aggregation rule and explore some of its key properties (Section 3.1).
- We present several families of parameterized max algorithms. The parameters for each family include the number of items compared by each human task, and the number of repetitions for each comparison (Sections 3.2 and 3.3). Note that the parameters may vary during an execution, e.g., we may initially perform fewer repetitions and in later stages perform more.
- We study strategies for tuning a max algorithm, i.e., for finding the parameter values that lead to lowest overall error, given appropriate constraints (Section 4).
- As part of our framework, we develop a number of models for worker error and user cost/payments (Sections 5.1 and 5.2).
- We experimentally evaluate our algorithms and strategies under various error and cost models (Section 6).

2. PRELIMINARIES

Our problem's input is a set of items $\mathcal{E}=\left\{e_{1}, e_{2}, \ldots, e_{|\mathcal{E}|}\right\}$. There is a smaller than relation $<$, which forms a strict ordering for the items in \mathcal{E}. That is, for any two items $e_{i}, e_{j} \in \mathcal{E}$ (with $i \neq j$) exactly one of the following is true: either $e_{i}<e_{j}$ or $e_{j}<e_{i}$. (We assume that $e_{i} \neq e_{j}$ for $i \neq j$.) The item $e_{i} \in \mathcal{E}$ for which $e_{j}<e_{i}, \forall j \in\{1,2, \ldots,|\mathcal{E}|\} \backslash\{i\}$ is called the maximum item in \mathcal{E}. Our goal is to recover the maximum item in \mathcal{E}, given a set of constraints (our problem is formally defined in Section 2.4). (Note that the $<$ relation is only a formalism used to quantify effectiveness. The max algorithms themselves do not use the $<$ relation.)

2.1 Comparisons

To determine the maximum item, an algorithm uses a comparison operator termed $\operatorname{Comp}()$. Operator $\operatorname{Comp}(S, r, \mathrm{R})$ asks r humans to compare the items in set $S \subseteq \mathcal{E}$ and combines the responses using aggregation rule R. (One simple rule R for example is to pick the item with the most votes, described in detail in Section 3.1.) Each of the r workers selects the item from S that he believes to be the maximum and R provides the overall winner.

We use a probabilistic model to describe a worker. In particular, our model gives a vector of probabilities $\vec{p}=$ [$\left.p_{1}, p_{2}, \ldots, p_{|S|}\right]$, where p_{1} is the probability that the worker returns the maximum item, p_{2} is the probability he returns the second best, and so on. For example, if $\vec{p}=[0.8,0.1,0.1]$, then a worker selects the maximum item in S with probability 0.8 , and each of the non-maximum items with 0.1 probability. We study other error models in Section 5.1.

In the crowdsourcing platforms we examine, human work is compensated. We denote the compensation of any human performing a comparison of $|S|$ items by $\operatorname{Cost}(|S|)$. We consider various types of cost functions in Section 5.2. The total cost of $\operatorname{Comp}(S, r, \mathrm{R})$ is the sum of its compensations, which is equal to $r \cdot \operatorname{Cost}(|S|)$.

2.2 Steps

Crowdsourcing algorithms are executed in steps. A batch of comparisons \mathcal{C}_{1} is submitted during the first step to the marketplace and after some time the human answers are returned. Then, depending on these answers, an appropriate set \mathcal{C}_{2} of comparisons is selected for the second step. For the selection of the \mathcal{C}_{i} comparisons all human answers from previous steps $(1,2, \ldots, i-1)$ can be considered.

Since the operations in a step are likely to be executed concurrently, the number of steps an algorithm requires is $\mathrm{a}(\mathrm{n})$ indicator/proxy of the execution time of the algorithm. The number of steps is an especially good indicator when the number of human workers is very large. Thus, we want the execution time proxy (number of steps) to be kept to a minimum.

2.3 Max Algorithms

Our work focuses on parameterized families of max algorithms, although many more algorithms can be considered. The input of a max algorithm is a set of items \mathcal{E} and the output is an item from \mathcal{E} that is believed to be the maximum in \mathcal{E}. To obtain a max algorithm A from a parameterized family of max algorithms \mathcal{A}, one needs to instantiate a number of parameters: $A=\mathcal{A}$ (parameters). We examine in detail two intuitive families of max algorithm in Section 3.

2.4 Problem Definition

The quantities we are interested in are:
$\operatorname{Time}(A, \mathcal{E})$, the Execution Time: The number of steps required for a max algorithm A to complete (and return one item) for input \mathcal{E}.
$\operatorname{Cost}(A, \mathcal{E})$, the (Monetary) Cost: The total amount of money required for A to complete:
$\sum_{i=1}^{\text {Time }(A, \mathcal{E})} \sum_{\operatorname{Comp}(S, r, \mathrm{R}) \in \mathcal{C}_{i}}[r \times \operatorname{Cost}(|S|)]$.
Quality (A, \mathcal{E}), the Quality of the Result: The probability that max algorithm A returns the maximum item from input \mathcal{E}.
Given a family of algorithms \mathcal{A}, our goal is to find parameters that "optimize performance." The optimization can be formulated in a variety of ways. Here, we focus on maximizing the quality of the result, for a given cost budget B and a given time bound T. The human models are an input to the problem, and thus, for example, Quality (A, \mathcal{E}) and $\operatorname{Cost}(A, \mathcal{E})$ take into account how humans act and how they are compensated.

Problem 1 (Max Algorithm).

$$
\begin{array}{cl}
\underset{A=\mathcal{A}(\text { parimizeters })}{\operatorname{maximize}} & \operatorname{Quality}(A, \mathcal{E}) \\
\text { subject to } & \operatorname{Cost}(A, \mathcal{E}) \leq B \\
& \operatorname{Time}(A, \mathcal{E}) \leq T
\end{array}
$$

Other possible formulations of the problem are:

- Given a desired quality of the result and a budget, optimize the execution time, or
- Given a desired quality of the result and an execution time bound, optimize the (monetary) cost.
The strategies we propose in Section 4 can be adjusted to address these problems, but we do not consider them in our current work.

Although we define our optimization problem using the Quality (A, \mathcal{E}) metric, we propose alternative metrics in Section 5.3. These metrics describe how close the returned item is to the maximum item in \mathcal{E}, while Quality (A, \mathcal{E}) describes whether A returns the maximum item in \mathcal{E} or not. For our evaluations (Section 6) we use both Quality() and the additional metrics.

3. PARAMETERIZED FAMILIES OF MAX ALGORITHMS

This section explores the two most natural families of parameterized max algorithms that can be used to solve the max algorithm problem (Problem 1). The parameterized families of max algorithms we propose operate in steps and their parameters are the following:
r_{i} : the number of human responses seeked at step i, and s_{i} : the size of the sets compared by $\operatorname{Comp}()$ at step i (one set can have fewer items). We assume a human cannot compare more than m items, thus $s_{i} \in\{2,3, \ldots, m\}$.
We refer to the r_{i} and s_{i} values used by one algorithm by $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ respectively.

First, we present an intuitive human responses aggregation rule (Section 3.1) that is a key component of every \max algorithm. Then, we describe the bubble max algorithms (Section 3.2) and the tournament max algorithms (Section 3.3).

3.1 Plurality Rule

This section describes the most common human responses aggregation rule: the plurality rule (denoted by R_{P}). In our complete report [19] we present another popular rule (the majority rule) and compare it to the plurality rule.

When comparison $\operatorname{Comp}\left(S, r, \mathrm{R}_{\mathrm{P}}\right)$ is performed, one of the items in S with the most votes is selected: If l items have received n responses each and there is no other item with more responses, then one of the l items (selected at random) is considered to be the maximum item in S. The l items are called winners.

To understand the impact of aggregation rules on Quality (), we define $\operatorname{AggrQuality}(s, r ; \vec{p}, \mathrm{R})$:

Definition 1. AggrQuality $(s, r ; \vec{p}, \mathrm{R})$ is the probability that R returns the maximum of s items, assuming we collect r human responses, and each response follows a probabilistic distribution \vec{p}.

To calculate $\operatorname{AggrQuality}\left(s, r ; \vec{p}, \mathrm{R}_{\mathrm{P}}\right)$ (for $\mathrm{R}=\mathrm{R}_{\mathrm{P}}$), we assume $S=\left\{e_{1}, e_{2}, \ldots, e_{s}\right\}$, with $|S|=s$ and $e_{s}<e_{s-1}<$ $\ldots<e_{1}$. Thus, if $\vec{p}=\left[p_{1}, p_{2}, \ldots, p_{s}\right]$, then p_{i} is the probability that a human response selected item e_{i} as the maximum in S. We note that the number of received human responses for items $e_{1}, e_{2}, \ldots, e_{s}$ follows a multinomial distribution with parameter \vec{p}. Thus, since r votes are provided, the probability that k_{i} votes have been issued for item e_{i} (for $i=1,2, \ldots, s)$ is $\frac{r!}{k_{1}!\cdot k_{2}!\cdots \cdot k_{s}!} \cdot \prod_{i=1}^{s} p_{i}^{k_{i}}$. Based on these probabilities, we can compute the overall quality of the aggregation rule as follows:

$$
\begin{aligned}
& \operatorname{AggrQuality}\left(s, r ; \vec{p}, \mathrm{R}_{\mathrm{P}}\right)= \\
& \sum_{l=1}^{s} \frac{1}{l} \sum_{n=1}^{r} \sum_{\substack{L \in \mathcal{L}}} \sum_{\substack{0 \leq k_{i} \leq n-1, i \in \bar{L} \\
\sum_{i \in \bar{L}} k_{i}+\ln =r}}\left[\frac{r!}{(n!)^{l} \prod_{j \in \bar{L}} k_{j}!} \prod_{z \in L} p_{z}^{n} \prod_{w \in \bar{L}} p_{w}^{k_{w}}\right],
\end{aligned}
$$

where \mathcal{L} is the set of all sets L that are subsets of $\{1,2, \ldots, s\}$ with $|L|=l$ and $1 \in L$. Also, $\bar{L}=\{1,2, \ldots, s\} \backslash L$. (The derivation can be found in our complete report [19]). In the following, $\operatorname{Comp}(S, r)$ will be considered equivalent to $\operatorname{Comp}\left(S, r, \mathrm{R}_{\mathrm{P}}\right)$.

In all known cases, $\operatorname{AggrQuality()~is~non-decreasing~on~} r$ (although there is no formal proof since 1785 [6], when the problem was first stated).

3.2 Bubble Max Algorithms

The family of Bubble max algorithms (denoted by \mathcal{A}_{B}) is named after the bubble-sort algorithm, because of its similarities to it. Algorithm $A=\mathcal{A}_{\mathrm{B}}\left(\left\{r_{i}\right\},\left\{s_{i}\right\}\right)$ is described in Algorithm 1.

In summary, A operates on \mathcal{E} as follows. If \mathcal{E} only has one item, this item is returned by the max algorithm A. Otherwise, a comparison with s_{1} random items from \mathcal{E} is performed and a winner w is declared. The s_{1} random items are removed from \mathcal{E}. If \mathcal{E} is now empty, w is returned. Otherwise, in every step $i, s_{i}-1$ items from \mathcal{E} are chosen and unioned with $\{w\}$ forming S_{i}^{\prime}. $\operatorname{Comp}\left(S_{i}^{\prime}, r_{i}, \mathrm{R}\right)$ is "executed" and a winner w is declared, while the items of S_{i}^{\prime} are removed from \mathcal{E}. When \mathcal{E} becomes empty, the last winner w is returned by the max algorithm.

To formally define the max algorithm problem (Problem 1) we introduce a few new variables in this section: x_{i} (the size of the output of step i), \underline{s}_{i} (the size of the smallest set that

```
Algorithm 1: \(\mathcal{A}_{\mathrm{B}}\left(\left\{r_{i}\right\},\left\{s_{i}\right\}\right)\) operating on \(\mathcal{E}\)
    if \(\mathcal{E}==\{e\}\) then
        return \(e\)
    \(S_{1}^{\prime} \leftarrow\) random subset of \(\mathcal{E}\) of \(\operatorname{size} \min \left(s_{1},|\mathcal{E}|\right)\);
    \(\mathcal{E} \leftarrow \mathcal{E} \backslash S_{1}^{\prime} ;\)
    \(w \leftarrow \operatorname{Comp}\left(S_{1}^{\prime}, r_{1}\right) ;\)
    \(i \leftarrow 2 ;\)
    while \(\mathcal{E} \neq \emptyset\) do
        \(S_{i} \leftarrow\) random subset of \(\mathcal{E}\) of \(\operatorname{size} \min \left(s_{i}-1,|\mathcal{E}|\right)\);
        \(\mathcal{E} \leftarrow \mathcal{E} \backslash S_{i} ;\)
        \(S_{i}^{\prime} \leftarrow S_{i} \cup\{w\} ;\)
        \(w \leftarrow \operatorname{Comp}\left(S_{i}^{\prime}, r_{i}, \mathrm{R}\right) ;\)
        \(i \leftarrow i+1\);
    return \(w\)
```

is compared at step i), and \bar{x}_{i} (the number of items that are compared within a set of size s_{i} at step i). For example, in step i, we can have an input of $x_{i-1}=12$ items and $s_{i}=5$. In this case, we will have 2 sets of size $s_{i}=5$ compared. Thus, $\bar{x}_{i}=10$ items are compared within sets of size s_{i}. The remaining $x_{i-1}-\bar{x}_{i}=\underline{s}_{i}=2$ items are included in a smaller set of size \underline{s}_{i} to be compared.

Now we are able to express the following three quantities:
$\operatorname{Time}(A, \mathcal{E})$: the smallest k for which $|\mathcal{E}|+k-\sum_{i=1}^{k} s_{i} \leq 1$.
$\operatorname{Cost}(A, \mathcal{E}): \sum_{i=1}^{\text {Time }(A, \mathcal{E})}\left(r_{i} \times \operatorname{Cost}\left(\underline{s}_{i}\right)\right)$.
Quality $(A, \mathcal{E}): \frac{s_{1}}{x_{0}} \times \prod_{i=1}^{\text {Time }(A, \mathcal{E})} \operatorname{AggrQuality}\left(\underline{s}_{i}, r_{i} ; \vec{p}_{i}, \mathrm{R}\right)+$ $+\sum_{j=2}^{\text {Time }(A, \mathcal{E})} \frac{\underline{s}_{j}-1}{x_{0}} \times \prod_{i=j}^{\text {Time }(A, \mathcal{E})} \operatorname{AggrQuality}\left(\underline{s}_{i}, r_{i} ; \vec{p}_{i}, \mathrm{R}\right)$. For this family of max algorithms $\operatorname{Quality}(A, \mathcal{E})$ is the summation of the probabilities of the maximum item taking part in the $i^{\text {th }}$ comparison for the first time, multiplied by the probability that it is propagated to all next steps.
Our goal is to select the appropriate sequences $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ in order to maximize Quality(), given constraints on Cost() and Time(). We formalize the optimization problem derived from Equation (1) for the bubble max algorithms in our complete report [19].

3.3 Tournament Max Algorithms

The Tournament max algorithms $\left(\mathcal{A}_{\mathrm{T}}\right)$ are named after tournament-like algorithms that declare best teams in sports. Given the parameters described at the beginning of this section (sequences $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$), we obtain a max algorithm $A=\mathcal{A}_{\mathrm{T}}\left(\left\{r_{i}\right\},\left\{s_{i}\right\}\right) . A$ operates on some input \mathcal{E} and returns some item from \mathcal{E}, as described in Algorithm 2.

```
Algorithm 2: \(\mathcal{A}_{\mathrm{T}}\left(\left\{r_{i}\right\},\left\{s_{i}\right\}\right)\) operating on \(\mathcal{E}\)
    \(i \leftarrow 1\);
    \(\mathcal{E}_{i} \leftarrow \mathcal{E} ;\)
    while \(\left|\mathcal{E}_{i}\right| \neq 1\) do
        partition \(\mathcal{E}_{i}\) in non-overlapping sets \(S_{j}\), with
        \(\left|S_{j}\right|=s_{i}\) (the last set can have fewer items);
        \(i \leftarrow i+1\);
        \(\mathcal{E}_{i} \leftarrow \bigcup_{j}\left\{C\left(S_{j}, r_{i}, \mathrm{R}\right)\right\} ;\)
    return \(e \in \mathcal{E}_{i}\)
```

In summary, A operates on \mathcal{E} as follows. Set \mathcal{E}_{i} contains the items that are compared at step $i\left(\mathcal{E}_{1}=\mathcal{E}\right)$. At step i, \mathcal{E}_{i} is partitioned in non-overlapping sets $\left(S_{j}\right.$, for $\left.j=1,2, \ldots,\left\lceil\frac{\left|\mathcal{E}_{i}\right|}{s_{i}}\right\rceil\right)$ of size $s_{i}\left(\left|S_{j}\right|=s_{i}\right)$ and the winners of each comparison $\operatorname{Comp}\left(S_{j}, r_{i}, \mathrm{R}\right)$ form set \mathcal{E}_{i+1}. If \mathcal{E}_{i+1} has exactly one item, this item is the output of A. Otherwise, the process is repeated for one more step.

To formally define the max algorithm problem (Problem 1) we need to be able to express three quantities:
$\operatorname{Time}(A, \mathcal{E})$: the minimum k for which $x_{k}=1$ (more details in our complete report [19]).
$\operatorname{Cost}(A, \mathcal{E}): \sum_{j=1}^{\mathrm{Time}(A, \mathcal{E})} r_{i} \cdot\left(\left\lfloor\frac{x_{j-1}}{s_{j}}\right\rfloor \times \operatorname{Cost}\left(s_{j}\right)+\operatorname{Cost}\left(\underline{s}_{j}\right)\right)$. $\operatorname{Quality}(A, \mathcal{E}): \prod_{j=1}^{\text {Time }(A, \mathcal{E})}\left(\frac{\bar{x}_{j}}{x_{j-1}} \operatorname{AggrQuality}\left(s_{j}, r_{j} ; \vec{p}_{j}, \mathrm{R}\right)+\right.$ $\left.\frac{\underline{s}_{j}}{x_{j-1}} \operatorname{AggrQuality}\left(\underline{s}_{j}, r_{j} ; \vec{p}_{j}, \mathrm{R}\right)\right)$, which is the product of the probabilities that the maximum item in each step is propagated to the next step.
We again aim to select appropriate sequences $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ in order to maximize Quality (), given constraints on $\operatorname{Cost}()$ and Time(). We formalize the optimization problem derived from Equation (1) for the tournament max algorithms in our complete report [19].

4. STRATEGIES FOR TUNING MAX ALGORITHMS

This section describes strategies that optimize max algorithms with parameters $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ that run in steps (like the ones we described in Section 3). Our strategies are not guaranteed to be optimal, but they heuristically determine parameter choices ($\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$) that improve performance while satisfying the (budget and time) constraints. We present the strategies by increasing complexity.

4.1 ConstantSequences

The first strategy we examine is the one most commonly used in practice today: The practitioner decides how big the sets of items are and how many human responses he seeks per set of items. ConstantSequences emulates this behaviour and selects parameters $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ among the constant sequences search space: For all i we have $r_{i}=r$ and $s_{i}=s$. This way, we only have two parameters (r and $s)$ to determine.

ConstantSequences operates as follows. It goes through all acceptable s values (from 2 to m), determines if the execution time constraint is satisfied, finds the maximum possible r for each s that keeps the cost below the budget B, and computes Quality(). Finally, ConstantSequences returns the "optimal" probability of returning the maximum item and the r and s that give this "optimal" probability $(\hat{p}, \hat{r}, \hat{s})$.

Proposition 1. If $\operatorname{AggrQuality}(s, r ; \vec{p}, \mathrm{R})$ is non-decreasing on r, ConstantSequences returns the optimal selection of r and s for constant sequences (for the bubble and tournament max algorithms).

The proof can be found in our complete report [19]. As mentioned in Section 3.1, AggrQuality() is assumed to be non-decreasing in the political philosophy literature for the plurality rule [14], and thus, we are confident that ConstantSequences returns the optimal r and s values.

4.2 RandomHillclimb

RandomHillclimb builds on top of ConstantSequences and operates as follows. It first determines the optimal r and s values using ConstantSequences; the s value does not change after this point for any step. Then, it attempts to adjust the r values across the steps, such that Quality() increases. A random source step c is selected and r_{c} (repetitions at step c) is decreased by 1 . Thus, some additional comparisons can be applied in other steps. We check each possible other step t and we attempt to add all the additional comparisons to this target step. If by "moving" the repetitions from c to t we manage to improve the quality of the tournament we adjust the sequence $\left\{r_{i}\right\}$. We perform this greedily, i.e., we make the adjustment for the step t that maximizes the improvement in Quality() every time. If at some point we fail to improve the performance of the max algorithm, we stop.

4.3 AllPairsHillclimb

AllPairsHillclimb is an extension of RandomHillclimb with one important difference: This strategy considers all possible steps as sources c (not just a random one). We again greedily change the r 's by keeping each time the source c and the target t that maximize the improvement in Quality (A, \mathcal{E}).

4.4 AllSAllPairsHillclimb

AllSAllPairsHillclimb is a generalization of the AllPairsHillclimb. The difference is that all possible s's are considered (not only the one that ConstantSequences returns). This optimization can only lead to improvements for Quality (). We observe the significance of these improvements in our experiments in Section 6.

4.5 VaryingS

```
Algorithm 3: \(\operatorname{VaryingS}\left(x_{0}, \vec{p}, B, T, \mathcal{A}\right)\)
    // global optimal values
    \(\left(\hat{p},\left\{\hat{r}_{i}\right\},\left\{\hat{s}_{i}\right\}\right) \leftarrow(0.0, N U L L, N U L L) ;\)
    \(\left(p,\left\{r_{i}\right\},\left\{s_{i}\right\}\right) \leftarrow\)
    AllSAllPairsHillclimb \(\left(x_{0}, \vec{p}, B, T, \mathcal{A}\right)\);
    \(u \leftarrow 1 ;\)
    \(\hat{r}_{u} \leftarrow r_{1} ;\)
    \(\hat{s}_{u} \leftarrow s_{1} ;\)
    \(b_{1} \leftarrow\) budget consumed from the selection of \(\hat{r}_{1}\) and \(\hat{s}_{1}\)
    on an input of size \(x_{0}\);
    while \(x_{u}>1\) do
        \(u \leftarrow u+1\);
        \(\left(p,\left\{r_{i}\right\},\left\{s_{i}\right\}\right) \leftarrow\)
        AllSAllPairsHillclimb ( \(x_{u-1}, \vec{p}, B-b_{u-1}, T-(u-\)
        1), \(\mathcal{A}\) ) ;
        \(\hat{r}_{u} \leftarrow r_{1}\);
        \(\hat{s}_{u} \leftarrow s_{1} ;\)
        \(b_{u} \leftarrow\) budget consumed from the selection of \(\hat{r}_{1}, \hat{r}_{2}\),
        \(\ldots, \hat{r}_{u}\) and \(\hat{s}_{1}, \hat{s}_{2}, \ldots, \hat{s}_{u}\) on an input of size \(x_{0}\);
    \(\hat{p} \leftarrow \operatorname{Quality}\left(\mathcal{A}\left(\left\{\hat{r}_{i}\right\},\left\{\hat{s}_{i}\right\}\right), \mathcal{E}\right) ;\)
    return \(\left(\hat{p},\left\{\hat{r}_{i}\right\},\left\{\hat{s}_{i}\right\}\right)\);
```

VaryingS is a generalization of AllSAllPairsHillclimb and it is the only strategy we examine that allows different s values in different steps. VaryingS operates as seen in Algorithm 3. The parameters for step 1 are the same as the
parameters the AllSAllPairsHillclimb returns for step 1 (lines 1-5). If the parameters for steps $1,2, \ldots, u-1$ have been decided, the parameters for step u are decided as follows: r_{u} and s_{u} are set equal to the parameters for step 1 of AllSAllPairsHillclimb with the non-consumed budget and execution time and the appropriate number of input items (lines $8-12$). The process stops when the selection of $\left\{s_{i}\right\}$ returns exactly one item in some step (line 7). After all the selections have occurred, Quality() is computed and returned (lines 13-14).

5. EVALUATION FRAMEWORK

Max algorithms can be used by various applications and each application gives rise to different human behaviours. Also, each application may focus on different evaluation metrics. To understand the quality/time/cost tradeoff, we explore various concrete error and compensation worker models (still a fraction of what our framework supports) in Sections 5.1 and 5.2, and propose various evaluation metrics in Section 5.3 (extending the already defined $\operatorname{Quality}(A, \mathcal{E})$ metric). In our complete report [19], we also explain how our proposed models can be applied in other domains.

5.1 Human Error Models

This section describes various models for human errors. We present our models from the most detailed one to the simplest one. As we have seen in Section 2.1, a set of items S is given to a human and the error model assigns probabilities to each (possible) response of a human. We assume there are no malicious workers, and thus $p_{1} \geq \frac{1}{|S|}$ (i.e., the probability of returning the maximum item in S is at least as high as the probability of returning a random item from S). Our complete report [19] describes how an appropriate model (and parameters) can be selected in practice.

Let the input set of items of each comparison be $S=$ $\left\{e_{1}, e_{2}, \ldots e_{|S|}\right\}$, with e_{i} being the $i^{\text {th }}$ best item in \mathcal{E} (or equivalently, $e_{|S|}<e_{|S|-1}<\ldots<e_{1}$). As a reminder, a human response has probability p_{i} of returning item e_{i}. The rank of an item is defined as follows:

Definition 2 (Item's Rank). The rank of item $e_{i} \in$ S, denoted as $\operatorname{rank}\left(e_{i}, S\right)$, is defined as the number of items in S that are better than e_{i} plus 1 .

For example, $\operatorname{rank}\left(e_{1}, S\right)=0+1=1$ and $\operatorname{rank}\left(e_{i}, S\right)=i$.
Proximity Error Model The proximity error model takes one parameter $p \in\left[\frac{1}{|S|}, 1\right]$ and assumes there is a distance function $d(\cdot, \cdot)$ that compares how different two items are. Formally, $d\left(e_{i}, e_{j}\right) \in(0,1)$ (since $e_{i} \neq e_{j}$ for $\left.i \neq j\right)$. When $d\left(e_{i}, e_{j}\right)$ is close to $0, e_{i}$ is similar to e_{j}. On the contrary, when $d\left(e_{i}, e_{j}\right)$ is close to $1, e_{i}$ and e_{j} are very different.

A worker returns e_{i} with probability:

$$
\left\{\begin{array}{l}
p_{1}=p \\
p_{i}=(1-p) \cdot \frac{1-d\left(e_{i}, e_{1}\right)}{\sum_{j=2}^{S S}\left[1-d\left(e_{j}, e_{1}\right)\right]}, i \in\{2,3, \ldots,|S|\} .
\end{array}\right.
$$

The intuition is the following: Humans find it hard to distinguish similar items. Thus, the closer one item is to the maximum item in S, the higher its probability of being selected by the human as the maximum.
Order-Based Error Model This model is similar to the previous model with one difference: The distance function
is defined as $d\left(e_{i}, e_{j}\right)=\frac{\left|\operatorname{rank}\left(e_{i}, S\right)-\operatorname{rank}\left(e_{j}, S\right)\right|}{|S|} \in(0,1) . \quad \mathrm{A}$ worker returns e_{1} with probability $p_{1}=p$ and returns e_{i} with probability $p_{i}=(1-p) \cdot \frac{|S|-\left|\operatorname{rank}\left(e_{i}, S\right)-\operatorname{rank}\left(e_{1}, S\right)\right|}{\sum_{j=2}^{|S|}\left[|S|-\left|\operatorname{rank}\left(e_{j}, S\right)-\operatorname{rank}\left(e_{1}, S\right)\right|\right]}$
for $i=2,3, \ldots,|S|$. Probabilities p_{i} depend on the order of item e_{i} in this model.
Linear Error Model This model assumes that the human worker is able to determine the maximum item in S with a probability that depends on the number of items $|S|$ to be examined. Intuitively, the more items to examine, the harder the task becomes.

The probability that a worker selects the maximum item is $p_{1}=1-p_{e}-s_{e} \cdot(|S|-2)$, where p_{e}, s_{e} are model parameters. Effectively, $p_{1}=1-p_{e}$ when $|S|=2$ and it decreases by s_{e} for each additional item in S. When the worker fails to return the maximum item (with probability $p_{e}+s_{e} \cdot(|S|-2)$, he returns a random (but not the maximum) item from S. Thus, each item in $\left\{e_{2}, e_{3}, \ldots, e_{|S|}\right\}$ has probability $\frac{1-p_{e}-s_{e} \cdot(|S|-2)}{|S|-1}$ to be selected. Values p_{e} and s_{e} take values in such a way that $p_{e}+s_{e} \cdot(|S|-2) \in\left[0,1-\frac{1}{|S|}\right]$ for all values of $|S|$ used in practice.
Constant Error Model This model assumes that the human worker is able to determine the maximum item from S with probability $p \in\left[\frac{1}{|S|}, 1\right]$, for any S (with $|S| \geq 2$). In the event that the worker is not able to determine the maximum item from S (which occurs with probability $1-p$), he returns one random non-maximum item from S. Thus, each item in $\left\{e_{2}, e_{3}, \ldots, e_{|S|}\right\}$ has probability $\frac{1-p}{|S|-1}$ to be selected.

5.2 Human Cost Models

This section describes the models we explore for human work cost. The function Cost (\cdot) we defined in Section 2.1 takes as input the number of items that are compared at a time.

Constant Cost Model In this model, each task has a fixed price. That is, $\operatorname{Cost}(|S|)=c$ for some constant c.
Linear Cost Model In this model, each task has a price that depends on $|S|$. If the human worker works on two items, he is compensated with c, if he works on three items, he is compensated with $c+s_{c}$, if he works on four items, he is compensated with $c+2 \times s_{c}$, and so on. Formally, $\operatorname{Cost}(|S|)=c+s_{c} \times(|S|-2)$, for some constants c and s_{c}.

5.3 Evaluation Metrics

We defined Quality (A, \mathcal{E}) as the main optimization criterion, but there are other metrics of interest. $\operatorname{Quality}(A, \mathcal{E})$ describes how often A returns the maximum item in \mathcal{E}. Other metrics evaluate how often A returns one of the top- k items in \mathcal{E}, or how close the returned items are to the maximum item. This section describes some standard metrics we have used for our evaluations. We note that we only optimize for the Quality (A, \mathcal{E}) metric, but evaluate max algorithms using the metrics we define in this section also.

We define the metrics of interest in the context of simulations. We simulate the application $A(\mathcal{E})$ (max algorithm A operates on input set \mathcal{E}) E times and then obtain the following values:
Top- k is the fraction of the E simulations for which $A(\mathcal{E})$ belonged in the top- k items of $\mathcal{E}($ i.e., $\operatorname{rank}(A(\mathcal{E}), \mathcal{E}) \leq k)$.

Mean Reciprocal Rank (MRR) is $\frac{1}{E} \sum_{i=1}^{E} \frac{1}{\operatorname{rank}_{i}}$, where rank_{i} is the rank of the returned item in the $i^{\text {th }}$ simulation.
Both metrics yield values in $[0,1]$: Values close to 0 indicate that A returns items that are not close to the maximum item, while values close to 1 indicate that A returns items that are close to the maximum. Also, both metrics have a probabilistic meaning: For the top- k metric for example, if we have a significantly large number of simulations, we converge to the probability that A returns an item in the top- k items. Finally, we experimentally observe exceptionally low variance values for our metrics (lower than 10^{-3} in all cases), and only report the expected metric values in Section 6.

6. EXPERIMENTS

This section summarizes various experiments we have performed, organized by results. We first explore which max algorithms and which strategies perform best. Surprisingly, we see that the same algorithm and strategy perform best under all combinations of human models and parameters we have tested (Section 6.1). Nevertheless, we explore in more detail:

- the effect of different parameters (like B, T, m, p, p_{e}, s_{e}, c, and s_{c}) on the performance of the max algorithms (Section 6.1),
- characterizations of the "optimal" solutions (Section 6.2),
- the effectiveness of our proposed optimization strategies, by comparing our heuristics to exhaustive search (Section 6.3), and
- the sensitivity of our algorithms to inaccurate estimations of the crowdsourcing system error model parameters (Section 6.4).
Additionally, in our complete report [19]:
- We show that even though obtaining the top- 1 item is hard, finding one of the top-2 or top-3 items is significantly easier in practice,
- We show that performing more repetitions in a single tournament is more effective than performing multiple tournaments (same input) with fewer repetitions each (and at the end combining results), and
- We show that relaxing the time bound constraint can improve the quality of the result by 50% in some cases.
Most of our experimental results were analytically calculated (and confirmed with simulations). In a few cases, we resorted to simulations only, since analysis was not possible. When we use simulations, we point out why analysis was hard and how our simulations were run.

6.1 Max Algorithms and Strategies Performance

This section compares the effect of various strategies to the quality of the result Quality() for the two parameterized max algorithms we have defined in Section 3 (bubble and tournament).

We experimented with various human models and parameters: budget (B), time bound (T), error model parameters (p, p_{e}, s_{e}), and cost model parameters (c, s_{c}). All parameters tested gave qualitatively similar results. For succinctness, we present one selection of human models and parameters. Figure 1 shows Quality() on the y-axis and the budget B on the x-axis, for each of the five strategies we described in Section 4 (ConstantSequences, RandomHillclimb, AllPairsHillclimb, AllSAllPairsHillclimb, and VaryingS).

Figure 1: The effect of the strategies (middle) on the tournament (left) and bubble (right) max algorithms.

The graph on the left refers to the tournament algorithm and the graph at the right to the bubble algorithm; the legend in the middle is common for both graphs. To generate Figure 1 we used $|\mathcal{E}|=100$, the order-based error model with parameter $p=0.78$ (one of the many values we tried in the range $[0.6,1]$), the linear cost model with parameters $c=1$ and $s_{c}=0.1$, and allowed sets S participating in some $\operatorname{Comp}()$ to have size at most $m=10$. Finally, we set the time bound T to infinity and varied the budget B between 20 and 100 with a step of 20 .

We observe in Figure 1 that there are "discontinuities" (jumps) for Quality() as budget B increases. These discontinuities exist because: (1) B needs to be increased by a particular amount to increase r_{i} for some step i (e.g., a tournament algorithm performs $r_{1} \times\left\lceil\frac{|\mathcal{E}|}{s_{1}}\right\rceil$ comparisons at step 1 , thus to increase r_{1} by 1 requires an additional budget for $\left\lceil\frac{|\mathcal{E}|}{s_{1}}\right\rceil$ new comparisons), and (2) the r_{i} increase does not have the same Quality() impact all times (e.g., increasing any r_{i} from 1 to 2 has no impact to Quality() by the plurality rule properties, but increasing r_{i} from 2 to 3 increases Quality()).

From Figure 1, we obtain the following:

> Result 1: As expected, as the budget B increases, the quality of the result Quality() increases (for all strategies).

Result 1 states the intuitive fact that the more money one is willing to spend, the higher the quality of the result is. The increase is almost linear for the range of budgets we examined. Furthermore, we do not observe topping off of gains for the values of budget B we present, but of course it takes place at higher values.

When comparing the five strategies with each other we obtain the following:

Result 2: For all budgets examined and for both the bubble and the tournament max algorithms there is a clear ordering of the strategies from best to worst: VaryingS, AllSAllPairsHillclimb, AllPairsHillclimb, RandomHillclimb, and ConstantSequences. Thus, VaryingS is the strategy that should be used in all cases in practice.
Most applications today use strategies like ConstantSequences, i.e., $r_{i}=r$ and $s_{i}=s$ for all steps i. Result 2 suggests that the quality of the result improves when the number of repetitions and the set size are allowed to vary across steps. Interestingly, comparing to ConstantSequences, VaryingS increases Quality() by $\sim 100 \%$ for the same budget in some cases (e.g., for the tournament algorithm for $B=40$)! Thus, applications can benefit by our strategies in two ways: either increase Quality() for a fixed budget, or produce a desired Quality() for a lower budget.

Comparing the two max algorithms (bubble and tournament) we obtain the following:

Result 3: Tournament max algorithms perform better than bubble max algorithms for the same budget.
The performance difference between the tournament and the bubble max algorithms can be explained in the following way. The maximum item has to "survive" (not erroneously be dropped by a comparison $\operatorname{Comp}())$ by all the comparisons it participates in for it to be the output of the max algorithm. In bubble max algorithms the worst case scenario is that the maximum item survives a very long chain of comparisons $(\Theta(|\mathcal{E}|))$, while in the tournament max algorithms the number of comparisons is small in all cases $(\Theta(\log |\mathcal{E}|))$. Finally, it is important to note that in no combination of human models and parameters that we tested, the bubble max algorithms performed better than the tournament max algorithms.

Now, observing each of the families of max algorithms separately, we observe that:

> Result 4: For very small or very large budgets B, the differences between the five strategies are not significant. For middle values of B though we observe large differences between the strategies. We generally observe large differences between the strategies for $B \approx \frac{|\mathcal{E}|}{2}$ shifted appropriately as the cost parameters change. Thus, it is "indifferent" which strategy is used for very small or very large values of B, but for the middle values VaryingS should be used when possible.

The differences between the Quality() values the strategies achieve, can be explained if we think of each strategy as a search in the parameter space of sequences $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$. For small values of B the differences between the resulting Quality() values are not significant, because there are not many choices of $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ permitted by budget B. As B increases, there are more parameter choices and the differences between the strategies' performance increase: Some strategies are able to determine good parameter choices and some are not. For very high values of B the differences between the performance of the algorithms decreases again. There are many $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ choices and all strategies perform very well: If there is enough budget, one can increase r_{i} 's significantly and observe high Quality () for any strategy. Browsing through the resulting $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ from the various strategies for large B 's indicates that the actual selected r_{i} and s_{i} values may be significantly different, but the Quality () values are very close. We also note that the differences between strategies are not significant when p_{1} is close to 1 .

6.2 Distribution of r 's

This section explores how the r_{i} values are distributed across the steps, when all steps have the same s_{i}. We experiment with the AllPairsHillclimb strategy and the tournament max algorithm.

Figure 2: Exploring how AllPairsHillclimb algorithm distributes repetitions (r_{i} 's) across steps.

Figure 2 shows the r_{i} values on the y -axis achieved for each step i (x-axis). For simplicity, we used $s_{i}=10$ for each step i and observed the r_{i} 's. We used $|\mathcal{E}|=10,000$ (thus, there are exactly 4 steps for the tournament max algorithm), infinite time bound $(T=\infty)$, the constant error model with $p=0.8$, and the constant human cost model with $c=1$. We used various budgets (from $B=1,500$ up to $B=10,000$).

From Figure 2 we observe that:
Result 5: Balanced numbers of repetitions across steps are beneficial when the budget allows it. Thus, when r_{i} 's are unbalanced, it is because the budget does not allow more repetitions to be allocated in some steps.

We observe in Figure 2 that when the budget is low ($B=$ 1,500) all 4 steps are assigned one repetition each ($r_{i}=1$ for all i 's). As budget increases ($B=4,000$ or $B=5,500$) mainly the last steps are benefited from more repetitions. (The number of comparisons performed in the initial steps is very high, and thus it costs a lot to allocate comparisons in them.) As we increase the budget even more ($B=10,000$), we observe that the repetitions across steps are again balanced (approximately 10 repetitions per step for all steps).

Interestingly, there no are clear patterns for the $\left\{s_{i}\right\}$ sequence, and we explain why in our full report [19].

6.3 Comparison with Exhaustive Search

This section evaluates how effective our strategies are with respect to an exhaustive search of the parameter space. In order to evaluate our strategies, we perform an exhaustive search over the space of $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$. The exhaustive search is very expensive, and thus we focus on a small instance of the problem: We consider $|\mathcal{E}|=10, m=4$, and set a maximum value for r_{i} to 5 . We use the linear error model (with $p_{e}=0.2$ and $s_{e}=0.04$), and the linear cost model (with $c=1$ and $s_{c}=0.2$). We set the budget B to 10 , and the time bound T to ∞. For the exhaustive search, we find all $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ that lead to $\operatorname{Cost}(A, \mathcal{E})$ below B and for each $A=\mathcal{A}_{\mathrm{T}}\left(\left\{r_{i}\right\},\left\{s_{i}\right\}\right)$ we simulate the value (averaging over 500,000 simulation runs) for each of the following metrics: MRR and top- k for $k=1,2$, and 3. (As mentioned earlier, Quality() and top-1 are the same: They both measure the probability that an algorithm returns the maximum item.) We only evaluate the VaryingS strategy for the tournament max algorithms, which is the best strategy (Result 2).

Figure 3: Comparing the VaryingS strategy for the tournament max algorithms with an exhaustive search over the parameter space.

Figure 3 shows the distribution of the metric values using box/whiskers plots and evaluates the effectiveness of VaryingS. Each box/whiskers plot shows the range of metric values observed as we exhaustively examine all $\left\{r_{i}\right\}$ and $\left\{s_{i}\right\}$ values (that meet the budget constraint). The top bar represents the maximum value observed, the bottom bar is the lowest value. The bottom of the box is the first quartile (minimum value above the 25% percent of the observed values), the top of the box is the third quartile (minimum value above 75% percent of the observed values), and the line in the middle of the box is the median value observed. The x -axis presents the metrics we examined (top- k and MRR). The y-axis presents the metric values. For each metric, we present the achieved value by VaryingS using the \times symbol.

By observing the range of metric values the exhaustive search achieves, we see that:

Result 6: For all metrics, there is a wide range of values that are achieved by different parameter selections. Thus, simple strategies are not likely to work well.
Observing the performance of the VaryingS strategy, we see that:

> Result 7: Even though VaryingS optimized over only one objective function (top-1 or Quality()), it produces very good results in all metrics we examined. Thus, it is enough to only optimize over Quality() using Varyings, to obtain high quality results.

Result 7 suggests that using VaryingS to tune algorithms is enough for any metric of interest.

6.4 Error Model Parameters Sensitivity

Modeling humans is a very difficult task, and thus it is vital for an algorithm to be tolerant in erroneous estimations of the error model parameters. This section explores how sensitive our algorithms are to the error model parameters. For our study, we assume that a crowdsourcing marketplace has error model parameters \vec{P}, but the algorithm $A=\mathcal{A}_{\mathrm{T}}\left(\left\{r_{i}\right\},\left\{s_{i}\right\}\right)$ that is run was generated by strategy Varyings with parameters $\vec{P}^{\prime} \neq \vec{P}$.

We have experimented with all the error models we have described in Section 5.1 obtaining similar results. We now describe one of the many experiments we have performed. For this experiment, we used $|\mathcal{E}|=1,000$ items with the linear cost model ($c=1$ and $s_{c}=0.2$), our budget was $B=1,400$, the time bound was $T=\infty$, and m was set to 10 . We used the linear error model with parameters $p_{e}=0.15$
and $s_{e}=0.02$. We generated various algorithms A using the VaryingS strategy, assuming that the crowdsourcing marketplace had parameters $p_{e}^{\prime} \in(0,0.3)$ and $s_{e}^{\prime}=s_{e}=0.02$. In Figure 4 we see the difference $\Delta p_{e}=p_{e}^{\prime}-p_{e}$ (x-axis) and the Quality () achieved by the algorithm A (y-axis) produced with the corresponding Δp_{e} (i.e., the algorithm returned by VaryingS when $p_{e}^{\prime}=p_{e}+\Delta p_{e}=0.15+\Delta p_{e}$).

Figure 4: Sensitivity of a tournament algorithm to the linear error model parameter p_{e}.

We see that:

> Result 8: As expected,the highest value for Quality () is observed for $\Delta p_{e}=0$. Negative and positive values of Δp_{e} (i.e., $p_{e}^{\prime} \neq p_{e}$) give slightly (but not significantly) smaller values for Quality(). Thus, small parameter errors do not significantly impact the performance of the algorithms.

Because of Result 8, the estimations of the actual parameters of the error models followed in practice do not need to be perfectly accurate. Thus, the cost for estimating the model parameters of a marketplace can be kept to a minimum with small accuracy losses in the algorithm's application.

7. RELATED WORK

A lot of work has been done in the context of our problem. In summary, comparing to previous work, our paper is different in at least three aspects:
Error/cost models: The error and cost models we consider are more general than previously considered error models.
Notion of Steps: Crowdsourcing environments force algorithms to be executed in steps, making the design of algorithms harder.
Number of items compared: We allow the flexibility of comparing "any" number of items per operation. All other techniques we are aware of only perform binary comparisons.
In the rest of this section we present work related to our paper.

Resilient algorithms Some related work to ours has extensively examined so-called resilient algorithms. These algorithms assume that some items from the input are corrupted (e.g., because of memory faults). The goal is to produce the correct result (for computing the maximum item in a set for example) for the uncorrupted items in the input. One of the first papers in this area is [9], where resilient algorithms for sorting and the max algorithm problem are provided. An overview paper on resilient algorithms is [13], which presents work done in resilient counting, resilient sorting, and the resilient max algorithm problem. Along these
lines $[10,11]$ attempt to understand for a given algorithm, how many corruptions can be tolerated for it to run correctly. In our work we assume that no item from the input may be corrupted, but that humans (who are effectively "comparators") can make mistakes. Also, only binary comparisons are considered in $[9,10,11,13]$; we consider any comparison of size 2 or more.

Sorting/Max algorithms with errors Another line of work similar to ours involves sorting networks, in which some comparators can be faulty. One of the first works in this area [21] proposes sorting algorithms that deal with two scenarios of faults: (1) up to k comparators are faulty and (2) each comparator has a probability δ (δ is small) of failing and yet, the result is retrieved correctly with probability greater than $1-\varepsilon$ (ε is small). In [4] sorting networks that return the correct result with high probability are constructed from any network that uses unreliable comparators (each comparator can be faulty with some probability smaller than $\frac{1}{2}$). The depth of the resulting network is equal to a constant multiplied by the depth of the original network.

In [16] the max algorithm problem is considered under two error models: (1) up to e comparisons are wrong, and (2) all "yes" answers are correct and up to e "no" answers are wrong. The max (and the sorting) problem is also considered in [3] under a different error model: If the two items compared have very similar values (their absolute difference is below a threshold), then a random one is returned; otherwise, the correct item is returned. The max algorithm problem is solved using $2 \cdot n^{\frac{3}{2}}$ comparisons. An extension of the error model used in [16] is given in [2] where up to a fraction of p of the questions are answered erroneously at any point. In [2] it is proved that if $p \geq \frac{1}{2}$, then the maximum item may not be retrieved; if $p<\frac{1}{2}$, then the maximum item can be retrieved with $\Theta\left(\frac{1}{(1-p)^{n}}\right)$ binary comparisons (where n is the size of the input). Even more elaborate error models are considered in [2]: For example, the number of wrong answers we have received may be at most p fraction of the number of questions only at the end of the process (and for example the first 5 questions may all be answered incorrectly). In this model if $p \geq \frac{1}{n-1}$, then the maximum item may not be found; if $p<\frac{1}{n-1}$, then the maximum item can be found in $n-1$ questions.

The complexity of four different problems is explored in [7, 8]. The problems considered are: (1) binary search, (2) sorting, (3) merging, and (4) selecting the $k^{\text {th }}$ best item. The error model considered is the following: For any comparison of items there is a probability p that the correct result is returned and $1-p$ that the wrong result is returned.

Again, this line of work also does not have the notion of steps, nor the complexity of the error models we are exploring. Also, the only type of comparisons that has been used is that of two items per comparison.

Crowdsourcing Marcus et al. [15] consider the problems of sorting and joining datasets in real crowdsourcing system, considering many practical issues. Their work implements max algorithms (as instances of sorting algorithms) by splitting the input set of items \mathcal{E} in non-overlapping sets of equal size and asking workers to sort these sets. Our work on the contrary allows us to answer more general questions regarding different scenarios, such as different types of human workers and compensation schemes, different algorithms and
strategies. For instance, we can use our framework to tune the tournament algorithm in the setting described in [15].

Tournament algorithms have been used in crowdsourcing to determine the correct answer to a difficult task [18]. Answers provided by n workers to a task (not necessarily a comparison) are compared (in pairs) by workers. The winners of the pairwise comparisons are compared with each other in the next step. This process continues for a fixed number of steps, after which the majority answer is returned. The intuition is that workers are better in identifying the correct answer (when comparing it to other answers) than in producing the correct answer.

Sorting in steps Work has also been done in sorting in a particular number of rounds (or steps as we defined them). Häggvist and Hell prove bounds on the complexity of sorting n items in r rounds [12]. In the same spirit, [5] answers the following question: How many processing units are required if one wants to sort n items in r rounds? In these two works there is no uncertainty about the data nor the comparisons.
Voting systems Voting systems have been used to declare a winner (maximum item in our case) according to votes (comparisons to other items in our case). One work in this line of research is [17], which declares a winner such that it creates the least disagreement with the votes of the crowd. Furthermore, de Condorcet [6] and List and Goodin [14] provide useful insights for the plurality rule from the standpoint of political philosophy.

8. CONCLUSIONS

We investigated methods for retrieving the maximum item from a set in a crowdsourcing environment. We developed parameterized families of algorithms to retrieve the maximum item and proposed strategies to tune these algorithms under various human error and cost models. We concluded, among other things, the following:

- The type of worker errors impact results accuracy, but not what is the best algorithm/strategy.
- It pays off to vary the size of a task.
- It pays off to vary/optimize the number of repetitions.
- Finding the maximum item with high accuracy is expensive, unless workers are very reliable. However, it is much easier (costs less) to find an item in the top-2 or top-3.
Our results explore multiple models and shed light on various aspects of realistic crowdsourced max algorithms. The models we used assume uniform and independent worker errors. Of course, in a real crowdsourcing environment these assumptions may not hold. We believe though it is important to first understand the tradeoffs between quality/time/cost in more tractable scenarios. Furthermore, our algorithms, optimized for the simplified model, may very well be good starting points in a more realistic setting, and can then be experimentally fine tuned.

Natural extensions of our work include the retrieval of the top- k items, from a set and sorting sets of items both from the modeling perspective and from the practitioners' viewpoint.

9. ACKNOWLEDGMENTS

We thank Aris Anagnostopoulos and Aditya G. Parameswaran for useful early discussions on this work.

10. REFERENCES

[1] Amazon Mechanical Turk. http://www.mturk.com/, sep 2011.
[2] M. Aigner. Finding the Maximum and Minimum. Discrete Applied Mathematics, 74(1):1-12, 1997.
[3] M. Ajtai, V. Feldman, A. Hassidim, and J. Nelson. Sorting and Selection with Imprecise Comparisons. In Automata, Languages and Programming, pages 37-48. 2009.
[4] S. Assaf and E. Upfal. Fault Tolerant Sorting Network. FOCS, pages 275-284, 1990.
[5] B. Bollobás and A. Thomason. Parallel Sorting. Discrete Applied Mathematics, 6(1):1-11, 1983.
[6] M. de Condorcet. Essai Sur L' Application De L' Analyse À La Probabilité Des Décisions Rendues À La Pluralité Des Voix. 1785.
[7] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Computing with Unreliable Information. In STOC, pages 128-137, 1990.
[8] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with Noisy Information. SIAM J. Comput., pages 1001-1018, 1994.
[9] I. Finocchi, F. Grandoni, and G. Italiano. Designing Reliable Algorithms in Unreliable Memories. In Algorithms - ESA, pages 1-8. 2005.
[10] I. Finocchi, F. Grandoni, and G. Italiano. Optimal Resilient Sorting and Searching in the Presence of Memory Faults. In Automata, Languages and Programming, pages 286-298. 2006.
[11] I. Finocchi and G. F. Italiano. Sorting and Searching in the Presence of Memory Faults (without Redundancy). In STOC, pages 101-110, 2004.
[12] R. Häggkvist and P. Hell. Sorting and Merging in Rounds. SIAM J. on Matrix Analysis and Applications, 3:465-473, 1981.
[13] G. Italiano. Resilient Algorithms and Data Structures. In Algorithms and Complexity, pages 13-24. 2010.
[14] C. List and R. E. Goodin. Epistemic democracy: Generalizing the Condorcet Jury Theorem. Journal of Political Philosophy, 9:277-306, 2001.
[15] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-Powered Sorts and Joins. PVLDB, 5:13-24, Sept. 2011.
[16] B. Ravikumar, K. Ganesan, and K. B. Lakshmanan. On Selecting the Largest Element in spite of Erroneous Information. In STACS, pages 88-99. 1987.
[17] Ronald L. Rivest and Emily Shen. An Optimal Single-Winner Preferential Voting System based on Game Theory. In COMSOC, pages 399-410, 2010.
[18] Y.-A. Sun, C. R. Dance, S. Roy, and G. Little. How to Assure the Quality of Human Computation Tasks When Majority Voting Fails? Workshop on Computational Social Science and the Wisdom of Crowds (NIPS), 2011.
[19] P. Venetis, H. Garcia-Molina, K. Huang, and N. Polyzotis. Max algorithms in crowdsourcing environments. Technical report, Stanford University. http://ilpubs.stanford.edu:8090/1017/.
[20] L. von Ahn. Games with a purpose. Computer, 39:92-94, 2006.
[21] A. C. Yao and F. F. Yao. On Fault-Tolerant Networks for Sorting. Technical report, Stanford, CA, USA, 1979.

